- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Tong, Guoxiang Grayson (3)
-
Schiavazzi, Daniele E (2)
-
Schiavazzi, Daniele E. (1)
-
Sing-Long, Carlos A (1)
-
Sing_Long, Carlos A (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Estimation of cardiovascular model parameters from electronic health records (EHRs) poses a significant challenge primarily due to lack of identifiability. Structural non-identifiability arises when a manifold in the space of parameters is mapped to a common output, while practical non-identifiability can result due to limited data, model misspecification or noise corruption. To address the resulting ill-posed inverse problem, optimization-based or Bayesian inference approaches typically use regularization, thereby limiting the possibility of discovering multiple solutions. In this study, we use inVAErt networks, a neural network-based, data-driven framework for enhanced digital twin analysis of stiff dynamical systems. We demonstrate the flexibility and effectiveness of inVAErt networks in the context of physiological inversion of a six-compartment lumped‐parameter haemodynamic model from synthetic data to real data with missing components. This article is part of the theme issue ‘Uncertainty quantification for healthcare and biological systems (Part 2)’.more » « lessFree, publicly-accessible full text available April 2, 2026
-
Tong, Guoxiang Grayson; Sing_Long, Carlos A; Schiavazzi, Daniele E (, Computer Methods in Applied Mechanics and Engineering)
-
Tong, Guoxiang Grayson; Schiavazzi, Daniele E. (, Computational Mechanics)
An official website of the United States government
